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ABSTRACT

Learning feedforward control based on the available dy-
namic/kinematic system model and sensor information isigen
ally effective for reducing the repeatable errors of a lesdrira-
jectory. For new trajectories, however, the system caneatfit
from previous learning data and it has to go through the léagn
process again to regain its performance. In industrial apg!
tions, this means production line has to stop for learningj the
overall productivity of the process is compromised. Toestiis
problem, this paper proposes a learning control schemedbase
neural network (NN) prediction. Learning/training is penfned
for the neural networks for a set of trajectories in advantieen
the feedforward compensation torque for any trajectoryha t
set can be calculated according to the predicted error froot-m
tiple neural networks managed with expert logic. Experitakn
study on a 6-DOF industrial robot has shown the superior per-
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it is hard to compensate it by standard model based feedfdrwa
control or model based adaptive control techniques.

If the robot is to execute repetitive tasks, and the robot
repeatability is good, the error information from past ater
tions/periods can be utilized to reduce the error for the itex
ation/period using the learning control techniques, sisciesa-
tive learning control (ILC) [1] and repetitive control [2for new
trajectories, however, the learned knowledge cannot leeitjr
applied and the system has to go through the learning process
again to regain its performance, which is undesired in itréals
applications.

On the other hand, if clear patterns appear in the error behav
ior, black box identification techniques can be applied toreste
the model following errorfor new trajectories based on the in-
formation from past learned trajectories. Then, learniogtiol
techniques can be applied to modify the feedforward congens

formance of the proposed NN based learning scheme in the po-tion torque based on these predictions for new trajectories

sition tracking as well as the residual vibration reductjavith-
out any further learning or end-effector sensors duringragien
after completion learning/training of motion trajectosién ad-
vance.

INTRODUCTION
End-effector performance in industrial robots suffersriro

Several earlier works for this case have attempted to extend
the learning knowledge to other varying motions using ticb-te
niques such as approximate fuzzy data model approach [8], ne
ral network [4], adaptive fuzzy logic [5], and experiencasbd
input selection [6]. Most of these algorithms are, howesigher
too complicated, or not suitable for highly nonlinear sysse
and none of them have explored the multi-joint robot chaést
tics with joint elasticity or proven their performance irethctual

the undesired discrepancy between the expected outpuhand t robot setup.

actual system output, known as ttm@del following error Usu-
ally, the complete dynamics to define this discrepancy ctio@o
modeled accurately due to its complexity and uncertaintyisT
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In this paper, by studying the robot dynamics and error char-
acteristics, we propose a learning control scheme usinigl taat
sis function neural network (NN) [7—9] based approach torlea
and predict thenodel following error Learning/training is per-
formed for the neural networks prior to the prediction foalre
time control stage. The prediction and control problem &ppr



erly decoupled into sub-problems for each individual jamnte-
duce the algorithm complexity and computation requirement
The performance of the proposed approach is experimentally
evaluated and compared with the sensor based learningotontr
which requires learning for each new trajectory.

SYSTEM OVERVIEW

Consider am-joint robot with gear compliance. The robot
is equipped with motor side encoders for real-time feedbach
an end-effector sensor (e.g., accelerometer) for offtisee Note
that, if the computing resource and the sensor configuraition
low, the end-effector sensor can also be used online. This pa
per, however, will address the conservative case wherertie e
effector sensor is for off-line and training use only, whishisu-
ally preferred in industry due to the cost saving and theténhi
real-time computational power.

Robot Dynamic Model
The dynamics of this robot can be formulated as [10]

M (ar)G +C(de, 9e) A + G(a) + Dol + Fresgr(@e) (1)
+ ‘]T(QE) fext = Ky (N71Qm - QE) +Dy (N71Qm - CI/)
Mm€im + Dm@m + FmeSgNGm) = Tm (2)

~ N1 [Ky (N"Ygm—¢) + Dy (N"2gm— )]

whereqy,gm € R" are the load side and the motor side posi-
tion vectors, respectivelyry, € R" is the motor torque vector.
M;(qr) € R™"is the load side inertia matrix(qy, g¢) € R™"

is the Coriolis and centrifugal force matrix, ag&lq,) € R" is
the gravity vectorMm, K3, D3, D/, Dm, Fre, Fme @andN € R™N
are all diagonal matrices. THgi)-th elements of these matri-
ces represent the motor side inertia, joint stiffness,tjdamp-
ing, load side damping, motor side damping, load side Cohlom
friction, motor side Coulomb friction, and gear ratio of thth
joint, respectively. fexx € R® denotes the external force acting
on the robot due to contact with the environment. The matrix
J(q,) € R®"is the Jacobian matrix mapping from the load side
joint space to the end-effector Cartesian space.

Define the nominal load side inertia matrix &8, =
diagMng,Mn2, -+ ,Mnn) € R™", where Mni = Myji(dw0), and
Myi(Qeo) is the (i,i)-th element of the inertia matri, (o)
at the home (or nominal) positiogyg. M, can be used to ap-
proximate the inertia matrik,(q,). The off-diagonal entries of
M,(q¢) represent the coupling inertia between the joints. Then,
the robot dynamic model can be reformulated as follows

MmGm + DmGm = Tm — FmeSgn(Gm) (3a)
~N"1[Ky (N *om—a¢) + D3 (N *dm—a/)]
Mt + D@ = d'(q) (3b)

+Kj (Nflqm — C]g) +Dy (N71Qm— CI/)
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Figure 1. Robot control structure with reference & torque updates

where all the coupling and nonlinear terms, such as Corio-
lis force, gravity, Coulomb frictions, and external forcese
grouped into a fictitious disturbance torquféq) € R" as

d’(q) = [MaM, *(ar) — In] [Ks (N tam— ) + Dy (N Lo — )
— D] —MaM, (a) [C(ar, G0
+G(0) + Fresgn(de) + 37 (al) fexd] (4)

whereq = [q,, qﬂT andl, is ann x nidentity matrix.
Thus, the robot can be considered as a MIMO system with
2n inputs and B outputs as follows

Am(J) = Pmu(2)Tm(j) + Pma(2)d
A(j) = Pu(2)tm(]) + P (2)d(

) (5)

(
j (6)

j
)

wherej is the time indexz is the one step time advance operator
in the discrete time domain, and the fictitious disturbamgeii
d(j) is defined as

T

[~ [Fmesgr(cm(i)]T, [d“(@(iIT]” (D)

The transfer functions from the inputs to the outputs (i.e.,
Pmu, Pmd, P, @ndPyg) can be derived from (3) as in [11].

Controller Structure for Iterative Learning Control

Note that the robot dynamic model (3) is in a decoupled form
since all the variables are expressed in the diagonal maimix
or vector form. Therefore, the robot controller can be imple
mented in a decentralized form for each individual joint.

Figure 1 illustrates the control structure for this robas-sy
tem, where the subscrifitis the iteration index. It consists of
two feedforward controllerds; andF,, and one feedback con-
troller, C. Here,C can be any linear feedback controller such
as a decoupled PID controller to stabilize the system. Tad-fe
forward controllersF; andF,, are designed using the nominal
inverse model as

(8)
(9)

Omak(}) = Pnu(2P, (@ %ax(i) 2 Fu(2)da k(i)

Tink(i) = Pra (2 [Gmak(j) + Tqk(i)] £ F2(2)0max(j)



where ¢ is the nominal model representation @f and ey is

the desired output 0é. rqx and 1,k are the additional refer-
ence and feedforward torque updates, respectively. Tkialini
ization/nominal values of these two updates are designed as

(10)
(11)

e oA
rg0 = NK; *(Trd — MnGiea — DeQrd)
Tnio = T££,0 — Tino

where

Trg = M (Qra)Gea +C(Ard, Gea) A + G(Ara) + D

+ Fresgn(Gra) + 3" (Gra) fexta (12)
Tmdo = Mmbmdo + Dmlmdo + FmcS9M(Gmd.o) (13)
Tt1.0 = Tmdo+ N1 (14)

If the trajectory is repetitive, the two updategyx and 1y i,
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Figure 2. Control diagram with neural network predictor

(11). The dashed lines indicate the parts when the endteffec
sensor is available and NN training can be conducted (eng., i

can be generated iteratively by some ILC scheme such as therobot factory tuning/testing stage). The training of thanaénet-

two-stage ILC algorithm designed in [11]. Particularlye tieed-
forward torque update, x can be designed to compensate for
the model following error of the inner plant (shaded areaign F
1) caused by the model uncertainty and the disturbance cahis
be realized using the plant inversion learning scheme [¥L],

Taikia(i) = Qu(D)[Tnik(i) + Pyt (Deyik()] (15)

whereP;, is the transfer function from the motor torqugto the
load side joint acceleraticgy. The corresponding model follow-
ing error is defined as;\ = P, Lk — Gr.k, Wherepy is the torque
input to the inner plant ar@’k is the load side joint acceleration
estimated from the end-effector accelerometer measurtsrasn
ing the inverse differential kinematics techniques suctha®ne
proposed in [12]. The low pasfilter Qu(z) is designed to trade
off the performance bandwidth with the model uncertainsies
high frequencies. The stability assurance for the ILC se&hem
and the monotonic convergenceeaj;’k are addressed in [11]. It
is shown that this torque update scheme is effective in lieduc
the end-effector vibration, which is captured by the acoste-
ter.

Controller Structure with Neural Networks

If a new motion trajectory is desired, the prior ILC learn-
ing knowledge cannot be directly applied. Moreover, if the-e
effector sensor is not available for executing the new tés&,
model following errore;, cannot be obtained for new learning

works will be detailed later. The other parts with solid Bria-
dicate the nominal control structure at the operation stabere
the NN predictor provides the model following error estimat
épg for each joint for any trajectory in the set. The feedforward
torque for a new trajectory is then computed as

T (i) = Qu(@[Tro(j) + Py (2)8())] (16)

Note that if the end-effector sensor is available, the ILGcpss
(15) with newly measured/calculated error information stth
continue after this initial run.

NEURAL NETWORK PREDICTOR

In this section a prediction system based on previously ac-
quired training data is presented to estimate the jointlacae
tion model following error, which exhibits repeatable patts
under certain conditions in the robot. Figure 3 shows thdipre
tor structure with all the parts detailed below.

Predictor Input Definition

The first step in this prediction problem is to choose the ap-
propriate input signals that define the model following erta
this paper, we propose to define the predictor inputs asadfextr
tory references of either 2 dimensions (2D, velocity ancthese
ation) or 3 dimensions (3D, velocity, acceleration, andtpmy.
Moreover, due to the coupling dynamics on the multi-joirtaty

process. In this paper, we propose a neural network scheme 0 fyrther study is carried out to identify the model follogiar-

predict the model following error for a set of trajectorieishaut
further learning or end-effector sensor.

Figure 2 shows the control diagram with neural network
(NN) predictor for the feedforward torque update, whigsede-
notes the nominal nonlinear feedforward controller desiim

ror as a proper combination of the trajectory references fat
joints together, which is termed as th@vement cosh this pa-
per.

Proposition 1. The model following error &, when applying
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Figure 3. Neural network predictor structure

nominal feedforward torqueg, o is a function of the joint trajec-
tory reference if the robot dynamics is repeatable.

Proof. According to the control structure detailed in Fig. 1, the
model following errore; , can be derived as

€0 =— AP S(C+ Pod) (lﬁmulﬁgﬂl%d +rq0) — TuSpTni0
+ (APZ‘USpC Bng— P@'d)do a7

whereS, = (In 4—CPmu)*l is the sensitivity function of the closed
loop systemT, = P; CPnu+ Py, andAP;, = Py, — Py, ([11]).

From (8)-(14),rq0 and 1y o are also the functions afyg.
Moreover, if the robot dynamics is repeatable and the ctiatro
setting remains the samdy will also be the function ofgyg.
Thus, the model following errog; , is a function of the joint
referenceyyy. O

This proposition implies that during the identification of
e, based oy, the feedback/feedforward controller and the
robot working environment should remain consistent fortfz
training trajectories as well as the future desired tagkdtaries.

Table 1. Non-diagonal elements in matrix @

if JaandJzarealigned | a=Jg Ja=-J

Dir_iK(Ja) = Dir_iK(Jg) 1 -1

Dir_iK(Ja) = —Dir_iK(Jg) -1 1

i |33 = 3 0

Ja :Joint axis for which the movement cost is evaluated
Js : Joint axis the effect of which ovel is assessed
Dir_iK Rotation direction when applying inverse kinematics

(a) Axis Direction Convention (b) Robot Home Position

Figure 4. 6-DOF robot example

joints, i.e.

Qil,d(l:) 1 &z...an q%d(]:)

Q[Z,d:(l) _ | 1 _ 2n qfd:(l) 18)

)] lamae.. 1] [dy)

——— ————

Q/t.j(j) ® Qea(j)

Qu(j) = PYa(]) (19)
Qud(j) = Pdua(j) (20)

where the design of® can be determined given a robot con-

Note that the robot dynamics is coupled among joints. Thus, figuration. In this paper, we study the case of a 6-joint robot

due torgp, Tn 0, anddp in (17), the model following error for
each joint depends on the reference trajectories of otl@sjas
well as that particular joint. In order to implement the dscal-
ized predictor for each joint, the NN predictor input for tiktn
joint is designed as themovement costosition vectorQ), ve-
locity vectorQ,4, and acceleration vect@, which are defined
as the linear combination of the reference trajectorieaszcall

where the end-effector orientation is fixed as the home iposit
shown in Fig. 4. The diagonal elements of the matbare

set to 1 since the movement cost on each joint depends girectl
on its own movement. Non-diagonal elements are determined
as shown in Tab. 1 according to the convention of axis direc-
tion shown in Fig. 4 and the desired direction of joint ratatto
move the end-effector with fixed orientation.



Following this idea, the matris becomes
(21)

Finally, the inputs to the prediction system are defined as
the velocity (19) and acceleration (20) movement costs r 2
neural networks, or position (18), velocity (19), and aecation
(20) movement costs for 3D neural networks. The dimension
selection depends on the available training data and th@gom
tation power. It can be expected that a 3D network will gelhera
provide more accurate prediction than a 2D network. However
more training data is required for a 3D network to perforneeff
tive learning. This also implies that more memory storage an
computation capability are required for 3D networks.

Data Pre-processing

For the neural network system to be effective, it is crucial
that there is a proper match between the data and neuron distr
bution in the input space. Hence, additional data pre-@msing
is developed to ensure that the training data covers alliffless
input values at which the neural network is intended to plevi
a prediction. This pre-processing stage consists of a matmi
normalization and variable redefinition of the input datayel|
as a filtering of the output data, i.e., the predicted modédie
ing error. It is aimed to simplify the complexity of the furan
that defines the model following error from the movementgost
and to standardize the neural network learning for optineal p
formance.

DenoteS as the set containing all the time steps, dnds
the total number of time steps for the executing trajectdiye
data pre-processing stage is to setup the input signalfor the
NN predictorfyy, i.e.

&) = {

wherej € S={0,1,2,---,T}, the subscriptd of vys denotes
the d-th dimension of the inputs, amgldenotes the number of
pre-processing steps as explained below applied to thig tfip
mension.

3D NN (22a)
2D NN (22b)

fun (U1,1()), U22()),U33(])),
fun(U2,2()),U33(]))),

Magnitude Normalization.  First, for a given trajectory
movement costs (i.eQq, Qud, andQyq), and the model follow-
ing errore,; to be learned by the neural network, a normalization

Table 2. Logic and boolean operator symbols

A LogicAnd | v Logic Or

- Logic Not
(o)

Boolean brackets with the outputefas 0 or 1

is applied to each input variable for th¢h joint, i.e.

A=max(d,(9).  ohali) = el
Co Qg i Qi)
U2,1(J)—ma U3’1(J)_max(£(%i£d(8)) (23)

where maxe) denotes the maximum absolute value across the
time series.

Prediction Viability Prediction is only viable while the
end-effector is moving, since it is based on velocity anceze
ation references. The viability conditiog, is defined as

(24)
(25)

Xé(j)=<‘ui2,1(j)’>5i2,1> v <’U§,1(J')‘ >3i3,1>
ces={i:x}cs

where the logic and boolean operators are defined as in Tab. 2.
&1 andey ; are small positive numbers to check if a number is

close to zeroS,, as a subset @, encloses the time stesthat
are eligible to be processed for the prediction atittiejoint.

Redefinition on Acceleration Dimension In prac-
tice, reference trajectories are generated to ensure Bnoot
tion. Thus acceleration and velocity pose a paraboliciceiahip
on the plane where the horizontal and the vertical axes doe-ve
ity and acceleration respectively (see Fig. 7(a) for exanpy
studying the experimental error characteristics, we e the
model following error depends on the ratio between the veloc
ity and the acceleration movement costs more significahtiy t
on any of these two inputs separately. To utilize this pattdre
third dimension (acceleration movement cost) is redefirgdalin

1. Change the third dimension to the arctangent between
the acceleration and the velocity movement costs, which
gives the result in the range ¢f7,7), i.e., u3,(j¢)

ob (i
arctan ?’1(1_iC) .
Uz (ic)

2. Normalize the resulting third input dimension,

Ul 4(jk) = 2

he ie.,
= 2U3,(jc)-

Normalize Second Input Dimension To distribute
data uniformly along all the input space, we need to normal-
ize the second input dimension (velocity movement costaelhe



Table 3. Neural network activation rule Then the boolean functiong,, are introduced to describe the
‘ NN Type ‘ Velocity ‘ Accelefation‘ Motion Stage following specific circumstances in the input data usingdlyéc

1 Positive Positive Accelerating and boolean operators defined in Tab. 2:

2 Positive Negative | Decelerating . xLAZ : Acceleration isconstant & closeto zero, i.e.,

3 Negative Positive Decelerating X:,,Az(ji:) = <‘U:I%3(ch) < €i3,3> A <’D [Ués(JE)} ‘ < 5iD,3,3>'
4 Negative Negative Accelerating Where£'3,3 and“:ID,3,3 are small numbers.

. X:),vc : Velocity remains constant for along period, i.e.,
acceleration is close to zero for a long period, which can
be obtained by analyzmg via Dilate andErodeimage
processing methods [13].

° Xp.As- Acceleration changes sign, i.e., acceleration is

sampled level of the third input dimension, i.e.

(ji )= Ui2.,1(jic,l) (26) close to zero for a short period,
max(u'21(8 I)) X! ns(ie) = <ﬁx'pvc(1'c)> A Xb g (i)
VJC| € S::I = {jc a < u33(je) < b|} C SC (27) ‘Xpr Positive velocity, i.e. vap(jc) <U22(jc) > O>

oxp,\,n : Negativevelocity, |.e.,xp,\,n(1c) = <U2!2(jc) < O>.
. X:),A3 Initial acceleration, or concave acceleration
when velocity is close to be constant, i.e., Xja(jc) =

wherel is the level numbeg andb; are the bounds of the third
input dimension for thé-th level.
This concludes the data pre-processing and the final predic-

tor is formulated as in (22a)-(22b). Note that for the timepst <U§,3(Jic) > 0> v <Dz [Uis,s(l'ic)} <0A XpAz(Jc)>
where the joint remains static, no joint prediction is aafalé, ° X;),D . Final deceleration, or convex acceleration
e, € (jhe) =0, Vine £ &- when velocity is close to be constant, i.e., x}p(jt) =

(Vhalib) < 0) v (T2 [ula(ib)] >0 A XL, () )
Multiple Neural Network Activation

In order to enhance the prediction performance, the problem  1hen each of_theitfour neural networks can be activated by
is divided into smaller prediction problems by means of iult ~ the boolean functiory, defined by the following rule, where
ple neural networks. Prior knowledge about the error befravi the superscrigtis the type of neural network defined in Tab. 3.

based on experience is formulated as several expert lolgs, ru

whereby each network is specialized to a selected set ot inpu XNN(J'C) = (Xpas(it) V Xpa(it)) A <ﬁxpvc(1 )) A vap(J )
data characterized by similar model following error bebawi i i , i i
under the movement cost definition. Here, each neural nktwor Xun () = (“Xpaslic) A Xpo(ie)) A (Xpvelie)) A XP!VP(J_C)
is confined to a different motion stage according to the s@fns XNN(J'C) = (= Xpas( iY A Xpo(] 'c)> A <ﬁvac(J'c ) A Xpvn(ic)
the velocity and the acceleration movement costs as deskirb i | i i
Tab. 3. Int}t/his way, the neural networks can learn all noaline XonIe) = <XpAS (i0) V Xpa(io) A FXovelle)) A Xpynlle)
ities (e.g., Coulomb friction effect) more effectively iiffdrent JNN N = {Jc XNN 'c)} Sc

motion stages.

By exploring the robot dynamics and error characteristics, The model following error prediction from theth neural
it is noted that thee,; peaks normally appear when motion  network on the-th joint for the time steps enclosed 8, is

starts/stops where strong acceleration is imposed, or When  janoted a®; (Slt ). Note that when velocity is constant for
joint ends accelerating or starts decelerating where at@n | d diction i £t @ Ti -0
a long period.e;; prediction is set to zero, I'@Ipéf\(JnNN) =0,

varies exponentially. In addition, an exception is studidgtre

velocity remains almost constant for long periods. In thgon, erinN ¢ {5% U S,Li U 5%'{?; U ﬁ'f,t }
e,; tends to zero since the standard feedback and feedforward
controller is normally designed to achieve satisfactogady/- Radial Basis Function Neural Network
state performance. With the identified error patterns, the radial basis functio
Define the pseudo-gradient and the pseudo-hessian for the o ral networks [7, 8] can be applied to effectively leara th
third dimension input signal as model following error. The success of prediction relies be t
NN learning method utilized to ensure a stable learning pro-
0Tk ()] = 0b (i) — Ul (il — 1 28 cess [9].
2[ ?’3(#)} ?’3(1_iC) 3,?(Jc.i ) — (28) The neural networks utilized here are composed
[ [US,S(JC)} = U33(jc) —2033(jc— 1)+ U33(ic—2) (29) of two layers, and based on the radial basis function



(RBF) in (30). Define thet-th neural network for the
i-th joint as ft __(X(jl ),6% ut o), where XI(jl )
is either [U},(j!),Ub4(jl)]T for 2D networks, or
(0110385, U5 5(i%), b 3(J5)IT for 3D networks.  Denote

D as the number of the input dimensions angas the number

of neurons in thed-th dimension. Thus, the total number of
RBF neurons at the input layeri&gr = nc[,’:llm. For them-th
neuron, the center position of the RBF and its width are prese
and denoted respectively @s € R® and o, € R. The neural
network output, scaled bﬁ(‘, € R, is then defined in (31) as
a product of the neuron regression veciof, ¢ RNReF+1, and

the parameter vectoB'" ¢ RNreF+1 where the last entr!
corresponds to the offset in the output prediction.

x=n3
fi(Xf,0)=e o (30)
& (i) = B8 T (X (i), A" 0")  (31)
o' =1[6f', -, 6% _, 6] (32)
fr (XL, gt o)
Pl ), it o't = : (33)

fr (XI (J,I\‘tN)7 ﬁ'i\}RBF7 O"i}RBF)
1

The parameter vectdt" is tuned to minimize the following
quadratic cost function/, using the training data with the ac-
tual model following error collected by the end-effectonser
and the inverse differential kinematics method proposddi2h,
as the dashed part in Fig. 2.

Vit = (el (i) (34)

it St
INNESIN

NI =

whereel(jlt, ) is the prediction error given the currefit, i.e.,

el ()= eLé-(ji}N) - éLZ(ji}N). The optimizedd™ for this least
squares problem can be numerically obtained by gradiertadet
with momentum [14-16] using heuristically adaptive stegesi

and momentum gain.

Data Post-processing

A zero-phase low-pass filter is applied to smooth the final
output of the NN predictor, which may contain discontiresti
resulted from the output switching among neural networks an
the unavailability of prediction during the static periodshe
cut-off frequency for this low-pass filter is set to be hightiean
that of the Q-filter in (16) to ensure that the predicted infation
is rich enough for control update.

End-
Effector

FANUC
M-16iB

CompuGauge
3D
Measurement
System

1,
[

o

Figure 5. FANUC M-16iB robot system

DISCUSSION OF THE APPROACH
Stability & Safety Analysis

The assurance of stability for this neural network based
learning control as well as several safety measures ara tat®
account during the design. On one hand, optimality andIgtabi
of the neural network training are ensured by utilizing shtia-
sis function neurons in a double layer network with a quadrat
cost function and momentum gradient method [15, 16]. On the
other hand, the stability of plant inversion learning coh¢i.5)-
(16) is assured as detailed in [11].

Furthermore, in order to increase prediction safety, data r
dundancy is utilized at the learning stage, and predictizseu
tainty is also considered at the error prediction and fermeiod
correction stage. Thus, as the uncertainty grows, the giedi
tends to zero, and no feedforward torque modification isiagpl

Memory & Computation Requirements

The presented approach is suited for centralized systems
where online equipment such as the data acquisition targkt a
robot controller have very limited computation and storage
sources but a computer with higher resources is availablefffo
line learning/training computation. In this way, one corgsu
could be utilized for neural network training and learnirane
trol of several different robots for cost saving. If compita
power and storage resources are quite limited (i.e., o&§RC is
not available), some extra customization and simplificatieea-
sures could be taken to facilitate the practical implemténa

EXPERIMENTAL STUDY
Test Setup

The proposed method is implemented on a 6-joint industrial
robot, FANUC M-16B/20, in Fig. 5. The robot is equipped with
built-in motor encoders for each joint. An inertia sensonéfog
Devices, ADIS16400) consisting of a 3-axial acceleromaiet
a 3-axial gyroscope is attached to the end-effector. Theethr
dimensional position measurement system, CompuGauges3D, i
utilized to measure the end-effector tool center point (I @#i-
tion as a ground truth for performance validation. The séampl



Table 4. Neuron distribution ranges for each neural network

‘ NN Type ‘ 1st Dimension 2nd Dimension 3rd Dimension
1 [-1,+1] [0,+1] (—0.1,+1]
2 [-1,+1] [0,+1] (—1,4+0.1)
3 [-1,+1] -1,0] (—1,4+0.1)
4 [-1,+1] -1,0] (—0.1,+1]
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Figure 6. Training (blue) and validation (red) trajectories for Joint 3,
based on a set of joint position, velocity, and acceleration references

rates of all the sensor signals as well as the real-time clthetr
implemented through MATLAB xPC Target are set to 1kHz.

Algorithm Setup

For learning control algorithms (15)-(16), the zero-phase
acausal low-pass filt€), is set with a cut-off frequency of 20Hz.
The cut-off frequency for the NN output filtering is set to 50H

In order to train the neural networks, experiments are per-
formed to obtain the model following error variances for & se
of different positions, velocities, and accelerationgnitcertain
workspace. In this paper, as a demonstration examplejrteain
and validation TCP trajectories are designed to move along X
axis for various distances of range of-6A00cm, with fixed ori-
entation but different varying velocities and accelenaioOnly

Acc. (radlsz)

Acceleration (radlsz)
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Figure 7. Joint 5 model following error. Color: Red= 4, Blue= —4,
Green= 0in [rad/sec?]. Figure (a) and (b) are 2D and 3D distributions,
respectively, based on Joint 5 reference before pre-processing stage. Fig-
ure (c) and (d) are 2D and 3D distributions, respectively, based on Joint
5 movement cost, with regards to the references from all joints, after pre-
processing stage.

Experimental Results

The performance of the proposed learning control (16) (ini-
tial run) based on NN predictiorLCP) is compared with the
basic controller (initial run in Fig. 1), and with the leamngicon-
trol (15) (second iteration) based on available end-eaffesgnsor
(LCY9), by learning the feedforward control input for the valida-
tion trajectory (Fig. 6, red trajectory).

Since the learning control (16) aims at model matching for
the inner plant during moving periods, results in theseareg)i
show that the CP achieves about 94.5% (calculated by using
root-mean-square (RMS) error values) of whatltlxSachieves
in reducing the model following errce,;. Figure 8 shows a

Joint 2, 3, and 5 need to move for these trajectories. Figure 6 graphical comparison of the error reduction on Joint 2, 3y}

shows the trajectories generated for Joint 3, where blugeahd
colors denote training and validation trajectories, retipely.

end-effector using the basic controll&gsig, LCS LCP, and
the prediction erroeyn. This result is confirmed with Tab. 5,

As described above, data is pre-processed for the neutal net which shows that th& CP achieves a substantial performance

work learning. Figure 7 shows the training data distribotoe-
fore and after applying the movement cost definition and tee p
processing stage for both 2D and 3D networks. Thereafter, fo
neural networks are trained for each moving joint, with 2830
of neurons uniformly distributed in the first dimension (pfor
3D NN), 10 and 11 rows of neurons for the second and third
dimensions respectively for each neural network as a todide-
between the performance and the computational viabilitye T
neuron distribution ranges (Tab. 4) are set to be equal getar
than the expected input range. The RBF widtfor each neuron
is set to 007 to ensure overlap between neurons.

enhancement at the end-effector besides the model mafohing
formance. Note that theCP also improves the performance at
the static period where the prediction is not viable. Thégist
performance improvement is expected as a result of signtfica
improvement at the dynamic period.

CONCLUSIONS

This paper investigated a learning control scheme based on
model following error prediction, which suggested a viaste
lution in the industry for end-effector performance enleanent
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Figure 8. Experimental performance comparisons for error reductions.
Figure (a), (b), and (c) show the model following error on Joint 2, 3, and

5 respectively. Figure (d) shows the end-effector position error
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Table 5. Percentage of LCP performance compared with LCS [%)]

(in Eu-

. Joint model End-effector End-effector
Period . . -
following error acceleration error position error
Global 84.6 66.3 56.2
Dynamic 94.5 74.3 70.0
Static 49.8 575 44.8

when production line requires flexibility and efficiency.€élpro-
posed method improved feedforward torque compensati@dbas
on predicted error from multiple neural networks. The robot
dynamics and error characteristics were explored and the ne
ral network predictor was accordingly designed with nowel i
put definition and data pre-processing stage. The radias bas
function was utilized in the two-layer neural networks ahd t
problem was further divided into four smaller neural netgor
for effective learning. Experimental study on a 6-DOF indus
trial robot showed a noticeable performance improvemetiief
end-effector over the basic controller for both dynamic stiadic

periods without learning for a specific trajectory.
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