
ROBOT LEARNING CONTROL BASED ON NEURAL NETWORK PREDICTION ∗

Jonathan Asensio
Dept. of Systems Engineering & Control

Polytechnic University of Valencia
Valencia, 46022, Spain

Email: jonathan.asensio@gmail.com

Wenjie Chen †

Dept. of Mechanical Engineering
University of California

Berkeley, California 94720, USA
Email: wjchen@me.berkeley.edu

Masayoshi Tomizuka
Dept. of Mechanical Engineering

University of California
Berkeley, California 94720, USA

Email: tomizuka@me.berkeley.edu

ABSTRACT
Learning feedforward control based on the available dy-

namic/kinematic system model and sensor information is gener-
ally effective for reducing the repeatable errors of a learned tra-
jectory. For new trajectories, however, the system cannot benefit
from previous learning data and it has to go through the learning
process again to regain its performance. In industrial applica-
tions, this means production line has to stop for learning, and the
overall productivity of the process is compromised. To solve this
problem, this paper proposes a learning control scheme based on
neural network (NN) prediction. Learning/training is performed
for the neural networks for a set of trajectories in advance.Then
the feedforward compensation torque for any trajectory in the
set can be calculated according to the predicted error from mul-
tiple neural networks managed with expert logic. Experimental
study on a 6-DOF industrial robot has shown the superior per-
formance of the proposed NN based learning scheme in the po-
sition tracking as well as the residual vibration reduction, with-
out any further learning or end-effector sensors during operation
after completion learning/training of motion trajectories in ad-
vance.

INTRODUCTION
End-effector performance in industrial robots suffers from

the undesired discrepancy between the expected output and the
actual system output, known as themodel following error. Usu-
ally, the complete dynamics to define this discrepancy cannot be
modeled accurately due to its complexity and uncertainty. Thus,

∗THIS WORK WAS SUPPORTED BY FANUC LTD., JAPAN, AND THE
UPV PROMOE EXCHANGE PROGRAM, SPAIN

†Address all correspondence to this author.

it is hard to compensate it by standard model based feedforward
control or model based adaptive control techniques.

If the robot is to execute repetitive tasks, and the robot
repeatability is good, the error information from past itera-
tions/periods can be utilized to reduce the error for the next iter-
ation/period using the learning control techniques, such as itera-
tive learning control (ILC) [1] and repetitive control [2].For new
trajectories, however, the learned knowledge cannot be directly
applied and the system has to go through the learning process
again to regain its performance, which is undesired in industrial
applications.

On the other hand, if clear patterns appear in the error behav-
ior, black box identification techniques can be applied to estimate
the model following errorfor new trajectories based on the in-
formation from past learned trajectories. Then, learning control
techniques can be applied to modify the feedforward compensa-
tion torque based on these predictions for new trajectories.

Several earlier works for this case have attempted to extend
the learning knowledge to other varying motions using the tech-
niques such as approximate fuzzy data model approach [3], neu-
ral network [4], adaptive fuzzy logic [5], and experience-based
input selection [6]. Most of these algorithms are, however,either
too complicated, or not suitable for highly nonlinear systems,
and none of them have explored the multi-joint robot characteris-
tics with joint elasticity or proven their performance in the actual
robot setup.

In this paper, by studying the robot dynamics and error char-
acteristics, we propose a learning control scheme using radial ba-
sis function neural network (NN) [7–9] based approach to learn
and predict themodel following error. Learning/training is per-
formed for the neural networks prior to the prediction for real-
time control stage. The prediction and control problem is prop-

erly decoupled into sub-problems for each individual jointto re-
duce the algorithm complexity and computation requirements.
The performance of the proposed approach is experimentally
evaluated and compared with the sensor based learning control,
which requires learning for each new trajectory.

SYSTEM OVERVIEW
Consider ann-joint robot with gear compliance. The robot

is equipped with motor side encoders for real-time feedback, and
an end-effector sensor (e.g., accelerometer) for off-lineuse. Note
that, if the computing resource and the sensor configurational-
low, the end-effector sensor can also be used online. This pa-
per, however, will address the conservative case where the end-
effector sensor is for off-line and training use only, whichis usu-
ally preferred in industry due to the cost saving and the limited
real-time computational power.

Robot Dynamic Model
The dynamics of this robot can be formulated as [10]

Mℓ(qℓ)q̈ℓ+C(qℓ, q̇ℓ)q̇ℓ+G(qℓ)+Dℓq̇ℓ+Fℓcsgn(q̇ℓ) (1)

+ JT(qℓ) fext = KJ
(
N−1qm−qℓ

)
+DJ

(
N−1q̇m− q̇ℓ

)

Mmq̈m+Dmq̇m+Fmcsgn(q̇m) = τm (2)

−N−1[KJ
(
N−1qm−qℓ

)
+DJ

(
N−1q̇m− q̇ℓ

)]

whereqℓ,qm ∈ R
n are the load side and the motor side posi-

tion vectors, respectively.τm ∈ R
n is the motor torque vector.

Mℓ(qℓ) ∈ R
n×n is the load side inertia matrix,C(qℓ, q̇ℓ) ∈ R

n×n

is the Coriolis and centrifugal force matrix, andG(qℓ) ∈ R
n is

the gravity vector.Mm, KJ, DJ, Dℓ, Dm, Fℓc, Fmc, andN ∈ R
n×n

are all diagonal matrices. The(i, i)-th elements of these matri-
ces represent the motor side inertia, joint stiffness, joint damp-
ing, load side damping, motor side damping, load side Coulomb
friction, motor side Coulomb friction, and gear ratio of thei-th
joint, respectively. fext ∈ R

6 denotes the external force acting
on the robot due to contact with the environment. The matrix
J(qℓ) ∈ R

6×n is the Jacobian matrix mapping from the load side
joint space to the end-effector Cartesian space.

Define the nominal load side inertia matrix asMn =
diag(Mn1,Mn2, · · · ,Mnn) ∈ R

n×n, whereMni = Mℓ,ii (qℓ0), and
Mℓ,ii (qℓ0) is the (i, i)-th element of the inertia matrixMℓ(qℓ0)
at the home (or nominal) positionqℓ0. Mn can be used to ap-
proximate the inertia matrixMℓ(qℓ). The off-diagonal entries of
Mℓ(qℓ) represent the coupling inertia between the joints. Then,
the robot dynamic model can be reformulated as follows

Mmq̈m+Dmq̇m = τm−Fmcsgn(q̇m) (3a)

−N−1[KJ
(
N−1qm−qℓ

)
+DJ

(
N−1q̇m− q̇ℓ

)]

Mnq̈ℓ+Dℓq̇ℓ = dℓ(q) (3b)

+KJ
(
N−1qm−qℓ

)
+DJ

(
N−1q̇m− q̇ℓ

)

+

−

C
+
+ Pmd

Pmu Pℓu

Pℓd

qmd,k τfb,k

µk

dk

qℓ,k

qm,k
P̂muP̂

−1

ℓu

qℓd,k rq,k

+
+

+
+

τln,k
τnl,k

P̂
−1

mu

Inner Plant

τm,k

F1

F2
q̄md,k

Figure 1. Robot control structure with reference & torque updates

where all the coupling and nonlinear terms, such as Corio-
lis force, gravity, Coulomb frictions, and external forces, are
grouped into a fictitious disturbance torquedℓ(q) ∈ R

n as

dℓ(q) =
[
MnM−1

ℓ (qℓ)− In
][

KJ
(
N−1qm−qℓ

)
+DJ

(
N−1q̇m− q̇ℓ

)

−Dℓq̇ℓ
]
−MnM−1

ℓ (qℓ)
[
C(qℓ, q̇ℓ)q̇ℓ

+G(qℓ)+Fℓcsgn(q̇ℓ)+ JT(qℓ) fext
]

(4)

whereq=
[
qT

m, qT
ℓ

]T
andIn is ann×n identity matrix.

Thus, the robot can be considered as a MIMO system with
2n inputs and 2n outputs as follows

qm(j) = Pmu(z)τm(j)+Pmd(z)d(j) (5)

qℓ(j) = Pℓu(z)τm(j)+Pℓd(z)d(j) (6)

where j is the time index,z is the one step time advance operator
in the discrete time domain, and the fictitious disturbance input
d(j) is defined as

d(j) = d(q(j)) =
[
−[Fmcsgn(q̇m(j))]T, [dℓ(q(j))]T

]T
(7)

The transfer functions from the inputs to the outputs (i.e.,
Pmu,Pmd,Pℓu, andPℓd) can be derived from (3) as in [11].

Controller Structure for Iterative Learning Control
Note that the robot dynamic model (3) is in a decoupled form

since all the variables are expressed in the diagonal matrixform
or vector form. Therefore, the robot controller can be imple-
mented in a decentralized form for each individual joint.

Figure 1 illustrates the control structure for this robot sys-
tem, where the subscriptk is the iteration index. It consists of
two feedforward controllers,F1 andF2, and one feedback con-
troller, C. Here,C can be any linear feedback controller such
as a decoupled PID controller to stabilize the system. The feed-
forward controllers,F1 andF2, are designed using the nominal
inverse model as

qmd,k(j) = P̂mu(z)P̂
−1
ℓu (z)qℓd,k(j), F1(z)qℓd,k(j) (8)

τln,k(j) = P̂−1
mu(z)

[
qmd,k(j)+ rq,k(j)

]
, F2(z)q̄md,k(j) (9)

where •̂ is the nominal model representation of•, and •d is
the desired output of•. rq,k andτnl,k are the additional refer-
ence and feedforward torque updates, respectively. The initial-
ization/nominal values of these two updates are designed as

rq,0 = NK̂−1
J (τ̂ℓd − M̂nq̈ℓd − D̂ℓq̇ℓd) (10)

τnl,0 = τ f f ,0− τ̂ln,0 (11)

where

τ̂ℓd = M̂ℓ(qℓd)q̈ℓd +Ĉ(qℓd, q̇ℓd)q̇ℓd + Ĝ(qℓd)+ D̂ℓq̇ℓd

+ F̂ℓcsgn(q̇ℓd)+ JT(qℓd) fext,d (12)

τ̂md,0 = M̂m ¯̈qmd,0+ D̂m ¯̇qmd,0+ F̂mcsgn(¯̇qmd,0) (13)

τ f f ,0 = τ̂md,0+N−1τ̂ℓd (14)

If the trajectory is repetitive, the two updates,rq,k andτnl,k,
can be generated iteratively by some ILC scheme such as the
two-stage ILC algorithm designed in [11]. Particularly, the feed-
forward torque updateτnl,k can be designed to compensate for
the model following error of the inner plant (shaded area in Fig.
1) caused by the model uncertainty and the disturbance. Thiscan
be realized using the plant inversion learning scheme [11],i.e.

τnl,k+1(j) = Qu(z)[τnl,k(j)+ P̂−1
ℓ̈u

(z)epℓ̈,k(j)] (15)

wherePℓ̈u is the transfer function from the motor torqueτm to the
load side joint acceleration ¨qℓ. The corresponding model follow-
ing error is defined asepℓ̈,k = P̂ℓ̈uµk− ¯̈qℓ,k, whereµk is the torque
input to the inner plant and̈̄qℓ,k is the load side joint acceleration
estimated from the end-effector accelerometer measurements us-
ing the inverse differential kinematics techniques such asthe one
proposed in [12]. The low passQ-filter Qu(z) is designed to trade
off the performance bandwidth with the model uncertaintiesat
high frequencies. The stability assurance for the ILC scheme
and the monotonic convergence ofepℓ̈,k are addressed in [11]. It
is shown that this torque update scheme is effective in reducing
the end-effector vibration, which is captured by the accelerome-
ter.

Controller Structure with Neural Networks
If a new motion trajectory is desired, the prior ILC learn-

ing knowledge cannot be directly applied. Moreover, if the end-
effector sensor is not available for executing the new task,the
model following errorepℓ̈,k cannot be obtained for new learning
process. In this paper, we propose a neural network scheme to
predict the model following error for a set of trajectories without
further learning or end-effector sensor.

Figure 2 shows the control diagram with neural network
(NN) predictor for the feedforward torque update, whereFnl de-
notes the nominal nonlinear feedforward controller designed in

+

Feedforward
Update

NN

Predictor

−

C
+
+ Pmd

Pmu Pℓu

Pℓd

qmd τfb

µ

d

qℓ

qm
P̂muP̂

−1

ℓu

qℓd rq,0

+
+

+
+

τln
P̂
−1

mu

Inner Plant

τm

F1

F2
q̄md

+

τnl,1

Nonlinear Feedforward

����������	
�

����
�
	����

����
���

����������
P̂
ℓ̈u

ˆ̈q
ℓ

¯̈q
ℓ

e
pℓ̈

ê
pℓ̈

τnl,0

p̈e

Fnl

−

Figure 2. Control diagram with neural network predictor

(11). The dashed lines indicate the parts when the end-effector
sensor is available and NN training can be conducted (e.g., in
robot factory tuning/testing stage). The training of the neural net-
works will be detailed later. The other parts with solid lines in-
dicate the nominal control structure at the operation stage, where
the NN predictor provides the model following error estimate
êpℓ̈ for each joint for any trajectory in the set. The feedforward
torque for a new trajectory is then computed as

τnl,1(j) = Qu(z)[τnℓ,0(j)+ P̂−1
ℓ̈u

(z)êpℓ̈(j)] (16)

Note that if the end-effector sensor is available, the ILC process
(15) with newly measured/calculated error information canstill
continue after this initial run.

NEURAL NETWORK PREDICTOR
In this section a prediction system based on previously ac-

quired training data is presented to estimate the joint accelera-
tion model following error, which exhibits repeatable patterns
under certain conditions in the robot. Figure 3 shows the predic-
tor structure with all the parts detailed below.

Predictor Input Definition
The first step in this prediction problem is to choose the ap-

propriate input signals that define the model following error. In
this paper, we propose to define the predictor inputs as the trajec-
tory references of either 2 dimensions (2D, velocity and acceler-
ation) or 3 dimensions (3D, velocity, acceleration, and position).
Moreover, due to the coupling dynamics on the multi-joint robot,
a further study is carried out to identify the model following er-
ror as a proper combination of the trajectory references from all
joints together, which is termed as themovement costin this pa-
per.

Proposition 1. The model following error epℓ̈,0 when applying

Input Definition

Pre-Processing

Multiple Neural
Network System

NN Predictor

Movement
Cost

Memory

Prediction
Viability
Condition

Dimension Normalization
& Redefinition

Neural Network Activation
Expert
Logic

NN1

NN2

NN3

qℓd(j) Qi

ℓd
(j)

Qi

ℓd
(S)

êi
pℓ̈
(j)

2D/3D(Si

c
)

2D/3D(Si1

NN
)

2D/3D(Si2

NN
)

2D/3D(Si3

NN
)

Expand

Low-pass
Filter

êi
pℓ̈
(S)

êi
pℓ̈
(Si

c)

Post-
Processing

êi
pℓ̈
(Si1

NN)

U

βi
0

βi
0

βi
0

êi
pℓ̈
(Si2

NN)

êi
pℓ̈
(Si3

NN)
NN3

NN4
2D/3D(Si4

NN
)

Uβi
0

βi
0

êi
pℓ̈
(Si4

NN)

Figure 3. Neural network predictor structure

nominal feedforward torqueτnl,0 is a function of the joint trajec-
tory reference if the robot dynamics is repeatable.

Proof. According to the control structure detailed in Fig. 1, the
model following errorepℓ̈,0 can be derived as

epℓ̈,0 =−∆Pℓ̈uSp(C+ P̂−1
mu)(P̂muP̂

−1
ℓu qℓd + rq,0)−TuSpτnl,0

+(∆Pℓ̈uSpCPmd−Pℓ̈d)d0 (17)

whereSp = (In+CPmu)
−1 is the sensitivity function of the closed

loop system,Tu = P̂ℓ̈uCPmu+Pℓ̈u, and∆Pℓ̈u = Pℓ̈u− P̂ℓ̈u ([11]).

From (8)-(14),rq,0 andτnl,0 are also the functions ofqℓd.
Moreover, if the robot dynamics is repeatable and the controller
setting remains the same,d0 will also be the function ofqℓd.
Thus, the model following errorepℓ̈,0 is a function of the joint
referenceqℓd. �

This proposition implies that during the identification of
epℓ̈,0 based onqℓd, the feedback/feedforward controller and the
robot working environment should remain consistent for allthe
training trajectories as well as the future desired task trajectories.

Note that the robot dynamics is coupled among joints. Thus,
due torq,0,τnl,0, andd0 in (17), the model following error for
each joint depends on the reference trajectories of other joints as
well as that particular joint. In order to implement the decentral-
ized predictor for each joint, the NN predictor input for thei-th
joint is designed as themovement costposition vectorQi

ℓd, ve-
locity vectorQ̇i

ℓd, and acceleration vector̈Qi
ℓd, which are defined

as the linear combination of the reference trajectories across all

Table 1. Non-diagonal elements in matrix Φ
if ~JA and ~JB are aligned ~JA ≡ ~JB ~JA ≡−~JB

Dir iK(~JA) ≡ Dir iK(~JB) 1 -1

Dir iK(~JA) ≡ −Dir iK(~JB) -1 1

if
∣
∣
∣∠~JA~JB

∣
∣
∣≡ π

2 0

~JA : Joint axis for which the movement cost is evaluated

~JB : Joint axis the effect of which over~JA is assessed

Dir iK : Rotation direction when applying inverse kinematics

(a) Axis Direction Convention (b) Robot Home Position

Figure 4. 6-DOF robot example

joints, i.e.








Q1
ℓd(j)

Q2
ℓd(j)
...

Qn
ℓd(j)








︸ ︷︷ ︸

Qℓd(j)

=








1 a12 . . . a1n

a21 1 . . . a2n
...

...
. . .

...
an1 an2 . . . 1








︸ ︷︷ ︸

Φ








q1
ℓd(j)

q2
ℓd(j)

...
qn
ℓd(j)








︸ ︷︷ ︸

qℓd(j)

(18)

Q̇ℓd(j) = Φ q̇ℓd(j) (19)

Q̈ℓd(j) = Φ q̈ℓd(j) (20)

where the design ofΦ can be determined given a robot con-
figuration. In this paper, we study the case of a 6-joint robot
where the end-effector orientation is fixed as the home position
shown in Fig. 4. The diagonal elements of the matrixΦ are
set to 1 since the movement cost on each joint depends directly
on its own movement. Non-diagonal elements are determined
as shown in Tab. 1 according to the convention of axis direc-
tion shown in Fig. 4 and the desired direction of joint rotation to
move the end-effector with fixed orientation.

Following this idea, the matrixΦ becomes

Φ =











1 0 0 1 0 1
0 1−1 0 1 0
0 −1 1 0−1 0
1 0 0 1 0 1
0 1−1 0 1 0
1 0 0 1 0 1











(21)

Finally, the inputs to the prediction system are defined as
the velocity (19) and acceleration (20) movement costs for 2D
neural networks, or position (18), velocity (19), and acceleration
(20) movement costs for 3D neural networks. The dimension
selection depends on the available training data and the compu-
tation power. It can be expected that a 3D network will generally
provide more accurate prediction than a 2D network. However,
more training data is required for a 3D network to perform effec-
tive learning. This also implies that more memory storage and
computation capability are required for 3D networks.

Data Pre-processing
For the neural network system to be effective, it is crucial

that there is a proper match between the data and neuron distri-
bution in the input space. Hence, additional data pre-processing
is developed to ensure that the training data covers all possible
input values at which the neural network is intended to provide
a prediction. This pre-processing stage consists of a magnitude
normalization and variable redefinition of the input data, as well
as a filtering of the output data, i.e., the predicted model follow-
ing error. It is aimed to simplify the complexity of the function
that defines the model following error from the movement costs,
and to standardize the neural network learning for optimal per-
formance.

DenoteS as the set containing all the time steps, andT as
the total number of time steps for the executing trajectory.The
data pre-processing stage is to setup the input signalsυd,s for the
NN predictor fNN, i.e.

êpℓ̈(j) =

{
fNN(υ1,1(j),υ2,2(j),υ3,3(j)), 3D NN (22a)

fNN(υ2,2(j),υ3,3(j)), 2D NN (22b)

where j ∈ S= {0,1,2, · · · ,T}, the subscriptd of υd,s denotes
the d-th dimension of the inputs, ands denotes the number of
pre-processing steps as explained below applied to this input di-
mension.

Magnitude Normalization. First, for a given trajectory
movement costs (i.e.,Qℓd, Q̇ℓd, andQ̈ℓd), and the model follow-
ing errorepℓ̈ to be learned by the neural network, a normalization

Table 2. Logic and boolean operator symbols

¬ Logic Not ∧ Logic And ∨ Logic Or

〈•〉 Boolean brackets with the output of• as 0 or 1

is applied to each input variable for thei-th joint, i.e.

β i
0 = max

(

ei
pℓ̈(S)

)

, υ i
1,1(j) =

Qi
ℓd(j)

max
(
Qi
ℓd(S)

) ,

υ i
2,1(j) =

Q̇i
ℓd(j)

max
(
Q̇i
ℓd(S)

) , υ i
3,1(j) =

Q̈i
ℓd(j)

max
(
Q̈i
ℓd(S)

) (23)

where max(•) denotes the maximum absolute value across the
time series•.

Prediction Viability Prediction is only viable while the
end-effector is moving, since it is based on velocity and acceler-
ation references. The viability condition,χ i

c, is defined as

χ i
c(j) =

〈∣
∣υ i

2,1(j)
∣
∣ > ε i

2,1

〉
∨
〈∣
∣υ i

3,1(j)
∣
∣ > ε i

3,1

〉
(24)

j ic ∈ Si
c =

{
j : χ i

c(j)
}
⊂ S (25)

where the logic and boolean operators are defined as in Tab. 2.
ε i

2,1 andε i
3,1 are small positive numbers to check if a number is

close to zero.Si
c, as a subset ofS, encloses the time stepsj ic that

are eligible to be processed for the prediction at thei-th joint.

Redefinition on Acceleration Dimension In prac-
tice, reference trajectories are generated to ensure smooth mo-
tion. Thus acceleration and velocity pose a parabolic relationship
on the plane where the horizontal and the vertical axes are veloc-
ity and acceleration respectively (see Fig. 7(a) for example). By
studying the experimental error characteristics, we note that the
model following error depends on the ratio between the veloc-
ity and the acceleration movement costs more significantly than
on any of these two inputs separately. To utilize this pattern, the
third dimension (acceleration movement cost) is redefined below.

1. Change the third dimension to the arctangent between
the acceleration and the velocity movement costs, which
gives the result in the range of(− π

2 ,
π
2), i.e., υ i

3,2(j ic) =

arctan

(

υ i
3,1(j ic)

υ i
2,1(j ic)

)

.

2. Normalize the resulting third input dimension, i.e.,
υ i

3,3(j ic) =
2
π υ i

3,2(j ic).

Normalize Second Input Dimension To distribute
data uniformly along all the input space, we need to normal-
ize the second input dimension (velocity movement cost) at each

Table 3. Neural network activation rule

NN Type Velocity Acceleration Motion Stage

1 Positive Positive Accelerating

2 Positive Negative Decelerating

3 Negative Positive Decelerating

4 Negative Negative Accelerating

sampled level of the third input dimension, i.e.

υ i
2,2(j ic,l) =

υ i
2,1(j ic,l)

max
(

υ i
2,1(S

i
c,l)
) (26)

∀ j ic,l ∈ Si
c,l =

{
j ic : al ≤ υ3,3(j ic)< bl

}
⊂ Si

c (27)

wherel is the level number,al andbl are the bounds of the third
input dimension for thel -th level.

This concludes the data pre-processing and the final predic-
tor is formulated as in (22a)-(22b). Note that for the time steps
where the joint remains static, no joint prediction is available,
i.e., êi

pℓ̈
(j inc) = 0, ∀ j inc /∈ Si

c.

Multiple Neural Network Activation
In order to enhance the prediction performance, the problem

is divided into smaller prediction problems by means of multi-
ple neural networks. Prior knowledge about the error behavior
based on experience is formulated as several expert logic rules,
whereby each network is specialized to a selected set of input
data characterized by similar model following error behaviors
under the movement cost definition. Here, each neural network
is confined to a different motion stage according to the signsof
the velocity and the acceleration movement costs as described in
Tab. 3. In this way, the neural networks can learn all nonlinear-
ities (e.g., Coulomb friction effect) more effectively in different
motion stages.

By exploring the robot dynamics and error characteristics,
it is noted that theepℓ̈ peaks normally appear when motion
starts/stops where strong acceleration is imposed, or whenthe
joint ends accelerating or starts decelerating where acceleration
varies exponentially. In addition, an exception is studiedwhere
velocity remains almost constant for long periods. In this region,
epℓ̈ tends to zero since the standard feedback and feedforward
controller is normally designed to achieve satisfactory steady-
state performance.

Define the pseudo-gradient and the pseudo-hessian for the
third dimension input signal as

∇
[
υ i

3,3(j ic)
]
= υ i

3,3(j ic)−υ i
3,3(j ic−1) (28)

∇2 [υ i
3,3(j ic)

]
= υ i

3,3(j ic)−2υ i
3,3(j ic−1)+υ i

3,3(j ic−2) (29)

Then the boolean functionsχ i
p,• are introduced to describe the

following specific circumstances in the input data using thelogic
and boolean operators defined in Tab. 2:

• χ i
p,AZ

: Acceleration is constant & close to zero, i.e.,

χ i
p,AZ

(j ic)=
〈∣
∣
∣υ i

3,3(j ic)
∣
∣
∣≤ ε i

3,3

〉

∧
〈∣
∣
∣∇
[

υ i
3,3(j ic)

]∣
∣
∣≤ ε i

∇,3,3

〉

,

whereε i
3,3 andε i

∇,3,3 are small numbers.

• χ i
p,VC

: Velocity remains constant for a long period, i.e.,
acceleration is close to zero for a long period, which can
be obtained by analyzingχ i

p,AZ
via Dilate andErodeimage

processing methods [13].
• χ i

p,AS
: Acceleration changes sign, i.e., acceleration is

close to zero for a short period,

χ i
p,AS

(j ic) =
〈

¬χ i
p,VC

(j ic)
〉

∧ χ i
p,AZ

(j ic)

• χ i
p,V p : Positive velocity, i.e.,χ i

p,V p(j ic) =
〈

υ i
2,2(j ic)> 0

〉

.

• χ i
p,Vn : Negative velocity, i.e.,χ i

p,Vn(j ic)=
〈

υ i
2,2(j ic)< 0

〉

.

• χ i
p,A : Initial acceleration, or concave acceleration

when velocity is close to be constant, i.e., χ i
p,A(j ic) =

〈

υ i
3,3(j ic)≫ 0

〉

∨
〈

∇2
[

υ i
3,3(j ic)

]

< 0 ∧ χ i
p,AZ

(j ic)
〉

• χ i
p,D : Final deceleration, or convex acceleration

when velocity is close to be constant, i.e., χ i
p,D(j ic) =

〈

υ i
3,3(j ic)≪ 0

〉

∨
〈

∇2
[

υ i
3,3(j ic)

]

> 0 ∧ χ i
p,AZ

(j ic)
〉

Then each of the four neural networks can be activated by
the boolean functionχ it

NN
defined by the following rule, where

the superscriptt is the type of neural network defined in Tab. 3.

χ i 1
NN
(j ic) =

〈
χp,AS(j ic) ∨ χp,A(j ic)

〉
∧ 〈¬χp,VC(j ic)〉 ∧ χ i

p,V p(j ic)

χ i 2
NN
(j ic) =

〈
¬χp,AS(j ic)∧ χp,D(j ic)

〉
∧〈¬χp,VC(j ic)〉 ∧ χ i

p,V p(j ic)

χ i 3
NN
(j ic) =

〈
¬χp,AS(j ic)∧ χp,D(j ic)

〉
∧〈¬χp,VC(j ic)〉 ∧ χ i

p,Vn(j ic)

χ i 4
NN
(j ic) =

〈
χp,AS(j ic) ∨ χp,A(j ic)

〉
∧ 〈¬χp,VC(j ic)〉 ∧ χ i

p,Vn(j ic)

j it
NN

∈ Sit
NN

=
{

j ic : χ it
NN
(j ic)
}
⊂ Si

c

The model following error prediction from thet-th neural
network on thei-th joint for the time steps enclosed bySit

NN
is

denoted as ˆepℓ̈(S
it
NN
). Note that when velocity is constant for

a long period, ˆepℓ̈ prediction is set to zero, i.e, ˆei
pℓ̈
(j i

nNN
) = 0,

∀ j i
nNN

/∈
{

Si 1
NN

⋃
Si 2

NN

⋃
Si 3

NN

⋃
Si 4

NN

}
.

Radial Basis Function Neural Network
With the identified error patterns, the radial basis function

neural networks [7, 8] can be applied to effectively learn the
model following error. The success of prediction relies on the
NN learning method utilized to ensure a stable learning pro-
cess [9].

The neural networks utilized here are composed
of two layers, and based on the radial basis function

(RBF) in (30). Define thet-th neural network for the
i-th joint as f it

NN,RBF
(~xi(j it

NN
),~θ it ,µ it ,σ it), where ~xi(j it

NN
)

is either [υ i
2,2(j it

NN
),υ i

3,3(j it
NN
)]T for 2D networks, or

[υ i
1,1(j it

NN
),υ i

2,2(j it
NN
),υ i

3,3(j it
NN
)]T for 3D networks. Denote

D as the number of the input dimensions andmd as the number
of neurons in thed-th dimension. Thus, the total number of
RBF neurons at the input layer isNRBF = ∏D

d=1md. For them-th
neuron, the center position of the RBF and its width are preset
and denoted respectively as~µm ∈ R

D andσm ∈ R. The neural
network output, scaled byβ i

0 ∈ R, is then defined in (31) as
a product of the neuron regression vector,~Γ it ∈ R

NRBF+1, and
the parameter vector,~θ it ∈ R

NRBF+1, where the last entryθ it
0

corresponds to the offset in the output prediction.

fr(~x,~µ ,σ) = e
−

‖~x−~µ‖2
2

σ2 (30)

êi
pℓ̈(j it

NN
) = β i

0
~θ it~Γ it (~xi(j it

NN
),~µ it ,σ it) (31)

~θ it =
[

θ it
1 , · · · , θ it

NRBF
, θ it

0

]
(32)

~Γ it (~xi(j it
NN
),~µ it ,σ it) =








fr(~xi(j it
NN
),~µ it

1 ,σ
it
1)

...
fr(~xi(j it

NN
),~µ it

NRBF
,σ it

NRBF
)

1








(33)

The parameter vector~θ it is tuned to minimize the following
quadratic cost function,V it

T , using the training data with the ac-
tual model following error collected by the end-effector sensor
and the inverse differential kinematics method proposed in[12],
as the dashed part in Fig. 2.

V it
T =

1
2 ∑

j it
NN

∈Sit
NN

(
ei

NN
(j it

NN
)
)2

(34)

whereei
NN(j it

NN
) is the prediction error given the current~θ it , i.e.,

ei
NN
(j it

NN
) = ei

pℓ̈
(j it

NN
)− êi

pℓ̈
(j it

NN
). The optimized~θ it for this least

squares problem can be numerically obtained by gradient method
with momentum [14–16] using heuristically adaptive step size
and momentum gain.

Data Post-processing
A zero-phase low-pass filter is applied to smooth the final

output of the NN predictor, which may contain discontinuities
resulted from the output switching among neural networks and
the unavailability of prediction during the static periods. The
cut-off frequency for this low-pass filter is set to be higherthan
that of the Q-filter in (16) to ensure that the predicted information
is rich enough for control update.

FANUC
M-16iB
Robot

Inertia
Sensor

End-
Effector

CompuGauge
3D

Measurement
SystemSystem

X

Z
Y

O

Figure 5. FANUC M-16iB robot system

DISCUSSION OF THE APPROACH
Stability & Safety Analysis

The assurance of stability for this neural network based
learning control as well as several safety measures are taken into
account during the design. On one hand, optimality and stability
of the neural network training are ensured by utilizing radial ba-
sis function neurons in a double layer network with a quadratic
cost function and momentum gradient method [15, 16]. On the
other hand, the stability of plant inversion learning control (15)-
(16) is assured as detailed in [11].

Furthermore, in order to increase prediction safety, data re-
dundancy is utilized at the learning stage, and prediction uncer-
tainty is also considered at the error prediction and feedforward
correction stage. Thus, as the uncertainty grows, the prediction
tends to zero, and no feedforward torque modification is applied.

Memory & Computation Requirements
The presented approach is suited for centralized systems

where online equipment such as the data acquisition target and
robot controller have very limited computation and storagere-
sources but a computer with higher resources is available for off-
line learning/training computation. In this way, one computer
could be utilized for neural network training and learning con-
trol of several different robots for cost saving. If computation
power and storage resources are quite limited (i.e., off-line PC is
not available), some extra customization and simplification mea-
sures could be taken to facilitate the practical implementation.

EXPERIMENTAL STUDY
Test Setup

The proposed method is implemented on a 6-joint industrial
robot, FANUC M-16iB/20, in Fig. 5. The robot is equipped with
built-in motor encoders for each joint. An inertia sensor (Analog
Devices, ADIS16400) consisting of a 3-axial accelerometerand
a 3-axial gyroscope is attached to the end-effector. The three-
dimensional position measurement system, CompuGauge 3D, is
utilized to measure the end-effector tool center point (TCP) posi-
tion as a ground truth for performance validation. The sampling

Table 4. Neuron distribution ranges for each neural network

NN Type 1st Dimension 2nd Dimension 3rd Dimension

1 [−1,+1] [0,+1] [−0.1,+1]

2 [−1,+1] [0,+1] [−1,+0.1]

3 [−1,+1] [−1,0] [−1,+0.1]

4 [−1,+1] [−1,0] [−0.1,+1]

−0.4

−0.2

0

0.2 −0.5
0

0.5

−10

0

10

Vel. (rad/s)Pos. (rad)

A
cc

. (
ra

d/
s

2)

Figure 6. Training (blue) and validation (red) trajectories for Joint 3,

based on a set of joint position, velocity, and acceleration references

rates of all the sensor signals as well as the real-time controller
implemented through MATLAB xPC Target are set to 1kHz.

Algorithm Setup
For learning control algorithms (15)-(16), the zero-phase

acausal low-pass filterQu is set with a cut-off frequency of 20Hz.
The cut-off frequency for the NN output filtering is set to 50Hz.

In order to train the neural networks, experiments are per-
formed to obtain the model following error variances for a set
of different positions, velocities, and accelerations within certain
workspace. In this paper, as a demonstration example, training
and validation TCP trajectories are designed to move along X-
axis for various distances of range of 60−100cm, with fixed ori-
entation but different varying velocities and accelerations. Only
Joint 2, 3, and 5 need to move for these trajectories. Figure 6
shows the trajectories generated for Joint 3, where blue andred
colors denote training and validation trajectories, respectively.

As described above, data is pre-processed for the neural net-
work learning. Figure 7 shows the training data distribution be-
fore and after applying the movement cost definition and the pre-
processing stage for both 2D and 3D networks. Thereafter, four
neural networks are trained for each moving joint, with 20 rows
of neurons uniformly distributed in the first dimension (only for
3D NN), 10 and 11 rows of neurons for the second and third
dimensions respectively for each neural network as a trade-off
between the performance and the computational viability. The
neuron distribution ranges (Tab. 4) are set to be equal or larger
than the expected input range. The RBF widthσ for each neuron
is set to 0.07 to ensure overlap between neurons.

(a) (b)

(c) (d)

Figure 7. Joint 5 model following error. Color: Red= 4, Blue= −4,

Green= 0 in [rad/sec2]. Figure (a) and (b) are 2D and 3D distributions,

respectively, based on Joint 5 reference before pre-processing stage. Fig-

ure (c) and (d) are 2D and 3D distributions, respectively, based on Joint

5 movement cost, with regards to the references from all joints, after pre-

processing stage.

Experimental Results
The performance of the proposed learning control (16) (ini-

tial run) based on NN prediction (LCP) is compared with the
basic controller (initial run in Fig. 1), and with the learning con-
trol (15) (second iteration) based on available end-effector sensor
(LCS), by learning the feedforward control input for the valida-
tion trajectory (Fig. 6, red trajectory).

Since the learning control (16) aims at model matching for
the inner plant during moving periods, results in these regions
show that theLCP achieves about 94.5% (calculated by using
root-mean-square (RMS) error values) of what theLCSachieves
in reducing the model following errorepℓ̈. Figure 8 shows a
graphical comparison of the error reduction on Joint 2, 3, 5,and
end-effector using the basic controller (Basic), LCS, LCP, and
the prediction erroreNN. This result is confirmed with Tab. 5,
which shows that theLCP achieves a substantial performance
enhancement at the end-effector besides the model matchingper-
formance. Note that theLCP also improves the performance at
the static period where the prediction is not viable. This static
performance improvement is expected as a result of significant
improvement at the dynamic period.

CONCLUSIONS
This paper investigated a learning control scheme based on

model following error prediction, which suggested a viableso-
lution in the industry for end-effector performance enhancement

8.8 9 9.2 9.4

−1.5

−1

−0.5

0

0.5

1

Time (s)

M
od

el
 F

ol
lo

w
in

g
E

rr
or

 (
ra

d/
s

2)

Basic
LCS
LCP
Prediction Err.

(a) Joint 2

8.8 9 9.2 9.4

−1

0

1

2

3

Time (s)
M

od
el

 F
ol

lo
w

in
g

E
rr

or
 (

ra
d/

s
2)

Basic
LCS
LCP
Prediction Err.

(b) Joint 3

8.8 9 9.2 9.4
−6

−4

−2

0

2

4

Time (s)

M
od

el
 F

ol
lo

w
in

g
E

rr
or

 (
ra

d/
s

2)

Basic
LCS
LCP
Prediction Err.

(c) Joint 5

8.8 9 9.2 9.4

1

2

3

4

x 10
−3

E
nd

−e
ffe

ct
or

 p
os

iti
on

 e
rr

or
.

E
uc

lid
ea

n
di

st
an

ce
. (

m
)

Time (s)

Basic
LCS
LCP

(d) TCP Position

Figure 8. Experimental performance comparisons for error reductions.

Figure (a), (b), and (c) show the model following error on Joint 2, 3, and

5 respectively. Figure (d) shows the end-effector position error
(

in Eu-

clidean distance,

√

e2
X +e2

Y +e2
Z

)

Table 5. Percentage of LCPperformance compared with LCS. [%]

Period
Joint model

following error
End-effector

acceleration error
End-effector

position error

Global 84.6 66.3 56.2

Dynamic 94.5 74.3 70.0

Static 49.8 57.5 44.8

when production line requires flexibility and efficiency. The pro-
posed method improved feedforward torque compensation based
on predicted error from multiple neural networks. The robot
dynamics and error characteristics were explored and the neu-
ral network predictor was accordingly designed with novel in-
put definition and data pre-processing stage. The radial basis
function was utilized in the two-layer neural networks and the
problem was further divided into four smaller neural networks
for effective learning. Experimental study on a 6-DOF indus-
trial robot showed a noticeable performance improvement ofthe
end-effector over the basic controller for both dynamic andstatic
periods without learning for a specific trajectory.

REFERENCES
[1] Bristow, D. A., and Tharayil, M., 2006. “A survey of

iterative learning control: A learning-based method for
high-performance tracking control”.IEEE Control Systems

Magazine(June), pp. 96–114.
[2] Cuiyan, L., and Dongchun, Z., 2004. “A survey of repeti-

tive control”. Intelligent Robots and Systems (IROS), 2004
IEEE/RSJ International Conference on, pp. 1160–1166.

[3] Gopinath, S., Kar, I., and Bhatt, R., 2008. “Experience in-
clusion in iterative learning controllers: Fuzzy model based
approaches”.Engineering Applications of Artificial Intelli-
gence,21(4), June, pp. 578–590.

[4] Arif, M., Ishihara, T., and Inooka, H., 2002. “Generaliza-
tion of iterative learning control for multiple desired trajec-
tories in robotic systems”.PRICAI 2002: Trends in Artifi-
cial Intelligence,2417, pp. 29–38.

[5] Chien, C.-j., 2008. “A Combined Adaptive Law for
Fuzzy Iterative Learning Control of Nonlinear Systems
With Varying Control Tasks”.IEEE Transactions on Fuzzy
Systems,16(1), Feb., pp. 40–51.

[6] Freeman, C. T., Alsubaie, M. A., Cai, Z., Rogers, E., and
Lewin, P. L., 2011. “Initial Input Selection for Iterative
Learning Control”. ASME Journal of Dynamic Systems,
Measurement, and Control,133, September.

[7] Moody, J., and Darken, C., 1989.Fast learning in net-
works of locally-tuned processing units. Neural Computa-
tion, 1:281-294.

[8] Poggio, T., and Girosi, F., 1990.Networks for approxima-
tion and learning. in Proceedings of the IEEE, volume 78,
pages 1481-1497.

[9] Viñuela, P. I., and Galván, I. M., 2004.Redes de Neuronas
Artificiales. Un Enfoque Pŕactico. Pearson Education.

[10] Wang, C.-C., 2008. “Motion Control of Indirect-drive
Robots: Model Based Controller Design and Performance
Enhancement Based on Load-side Sensors”. PhD thesis,
University of California at Berkeley.

[11] Chen, W., and Tomizuka, M., 2012. “Iterative Learing Con-
trol with Sensor Fusion for Robots with Mismatched Dy-
namics and Mismatched Sensing”. In Proceedings of the
ASME 2012 Dynamic Systems and Control Conference.

[12] Chen, W., and Tomizuka, M., 2012. “Load Side State Es-
timation in Elastic Robots with End-effector Sensing”. In
Proceedings of the 2012 IEEE/ASME International Confer-
ence on Advanced Intelligent Mechatronics (AIM).

[13] Bovik, A. C., 2009.The Essential Guide to Image Process-
ing. Elsevier.

[14] Rumelhart, D., Hintont, G., and Williams, R., 1986.
“Learning representations by back-propagating errors”.
Nature,323(6088), pp. 533–536.

[15] Torii, M., and Hagan, M., 2002. “Stability of steepest de-
scent with momentum for quadratic functions”.Neural Net-
works, IEEE Transactions on,13(3), pp. 752–756.

[16] Asensio, J., 2012.UCB-FANUC Project Report - Predicted
Acceleration Estimation Error Via Neural Networks For
Robot End-effector Performance Enhancement. Depart-
ment of Mechanical Engineering, University of California,
Berkeley.

